
Technology Mapping for Area Optimized Quasi Delay Insensitive Circuits

Bertrand Folco, Vivian Brégier, Laurent Fesquet, Marc Renaudin
 TIMA Laboratory, 46 av. Félix Viallet

38031 Grenoble – FRANCE
{Bertrand.Folco, Vivian.Bregier, Laurent.Fesquet, Marc.Renaudin}@imag.fr

Abstract
Quasi delay insensitive circuits are functionally

independent of delays in gates and wires (except for
some particular wires). Such asynchronous circuits offer
high robustness but do not perform well to automatically
synthesize and optimize. This paper presents a new
methodology to model and synthesize data path QDI
circuits. The model used to represent circuits is based on
Multi-valued Decision Diagrams and allows obtaining
QDI circuits with two-input gates. Optimization is
achieved by applying a technology mapping algorithm
with a library of asynchronous standard cells called
TAL. This work is a part of the back-end of our synthesis
flow from high level language. Throughout the paper, a
digit-slice radix 4 ALU is used as an example to
illustrate the methodology and show the results.

1. Introduction

Asynchronous circuits do not have a global signal to

synchronize them. Synchronization between blocks is
locally done. Those circuits show very interesting
properties such as low power consumption, noise
emission, security, robustness, reusability, etc [1].

Today, to adopt the asynchronous technology the

industry needs powerful asynchronous tools similar to
synchronous ones.

This work is part of the TAST [2, 3] (Tima

Asynchronous Synthesis Tool) project, aimed at
developing and prototyping such tools. The synthesized
circuits in TAST are quasi-delay insensitive (or QDI
[4]). QDI circuits are functionally correct independently
of delays in gates and wires, apart from the assumption
that some forks are isochronic. This kind of
asynchronous circuit is particularly robust. But
robustness has a cost; these circuits usually have more
transistors than the others, especially when standard cells
are targeted. Many efforts are directed towards circuit
optimization and transistor reduction; one of the main
difficulties is to preserve the property of quasi-delay
insensitivity [5-9].

2. Contributions

This paper presents a complete standard cells based

design flow we have developed as illustrated in Figure 1.
Our method uses Multi-valued Decision Diagrams as a
model of the circuit that can be optimized while
preserving the QDI property. Firstly, the model is
generated from a CHP description. Secondly, the model
is optimized. A two-input gates circuit is synthesized
from the model. Thirdly, a technology mapping
algorithm produces the final circuit, using gates from a
library of standard asynchronous cells called TAL
(TIMA Asynchronous Library).

This design flow includes a general technology
mapping algorithm dedicated to QDI circuits. It enables
to target any standard cells library, including or not
asynchronous cells. The main objective of this work is to
reduce the area of the asynchronous circuits. In fact, this
is one of the main challenge for the asynchronous
circuits to be adopted. Accordingly, the last part of the
paper compares results obtained for our asynchronous
circuits to its synchronous equivalent.

Figure 1 : Asynchronous Design Flow

3. Asynchronous Circuits

3.1. Communication channels and handshake
protocol

In asynchronous circuits, a local mechanism is used

to perform the synchronization called handshake

protocol. It relies on two signals: request and
acknowledgment. When a block needs to transmit data to
another, it sends a request signal along with the data, and
holds them until it receives the acknowledgment. The
request and acknowledgment signals may not be reset
before the next communication, making two possible
handshake protocols, well-known as two-phase and four-
phase protocols. Asynchronous circuits considered in
TAST implement the latter. Request, acknowledgment
and data are linked together; therefore we consider them
as a single entity called communication channel.

3.2. Quasi Delay Insensitivity

A circuit is said QDI (Quasi Delay Insensitive) when

its correct operation does not depend on the delays of
gates or wires, except for certain wires that form
isochronic forks [10]. If a circuit is QDI, a transition on
its input must cause a transition on its output. It is said
that the transition on the output acknowledges the
transition on the input. Mutual exclusion plays a very
important role to prove this causality relationship [11].

3.3. Delay Insensitive Code

In QDI circuits, a mechanism must guarantee that

when a channel emits a request, its data are available. To
achieve this, the request is encoded with the data using a
1-of-n code: n rails are used to implement n possible
values, numbered 0 to n-1. When all the rails are '0',
there is no data and the request is '0'. The channel is said
invalid. When one of the rails is '1', its number is the
value of the data, and the request is '1'. The channel is
said valid. Other codes, when several rails are '1', are out
of the code, and therefore forbidden. The code is said
Delay Insensitive since it guarantees that the request
signal is always synchronized with the data.

3.4. The Muller gate

Asynchronous circuits need a gate that synchronizes

several signals. This gate is called Muller gate (or C-
element): when all inputs are equal, the output takes their
value; when inputs are different, the output holds its
value. Its symbol is a circle.

3.5. An example

Throughout this article, we illustrate our method with

the example presented in Figure 2. This example is a
digit-slice radix 4 ALU: it computes the function Op
between its operands A and B, using the carry Cin and
Cout when needed (addition and subtraction). Radix 4
was chosen to demonstrate that the method is not limited
to dual rail. The ALU can compute seven different
operations (add, sub, and, or, xor, neg, not); therefore Op
is encoded with a 1-of-7 code. The CHP code is given in
Figure 3.

A

B
S

Cout

Cin

MR[4]

MR[4]

MR[4]

MR[2]

MR[2]Op
MR[7]

Figure 2: A digit-slice radix 4 ALU.

process alu_digit_slice
port (op: in di MR [7], a: in di MR [4],
 b: in di MR [4], cin: in di MR [2] ,
 s: out di MR [4], cout: out di MR [2] ;)
begin
variable op: MR[7], a: MR[4], b: MR[4],c : MR[2] ;
*[
Op?op;
@[
op = '0' => A?a, B?b; --add
 @[a +b<3 => Cout!0, [Cin?c; S!a+b+c]; --K
 a +b=3 => Cin ?c; [Cout ! c, S !(c=0?3: 0)] ; --P
 a+b >3 => Cout ! 1, [Cin?c; S !(a+b+c- 4)] ; --G
 op = ' 1' => A ?a, B ?b; --sub
 @[b - a<3 => Cout ! 0, [Cin ?c; S ! b- a+c] ; --K
 b - a=3 => Cin?c; [Cout ! c,S !(c=0?3: 0)] ; --P
 b - a>3 => Cout ! 1, [Cin?c; S! (b- a+c- 4)] ; --G
 op = ' 2' => A ?a, B ?b; S! a and b; --and
 op = ' 3' => A ?a, B ?b; S ! a or b; --or
 op = ' 4' => A ?a, B ?b; S ! a xor b; --xor
 op = ' 5' => A ?a; S !(not a +1) ; --neg
 op = ' 6' => A ?a; S !(not a) ; --not
]]
end

Figure 3: CHP code of the example

4. Circuit modeling using MDDs

The first step of our method is to model the circuit

with Multi-valued Decision Diagrams (MDDs). It is
presented in this section.

A MDD [12] is a generalized BDD (Binary Decision
Diagram, [13]) structure. This structure is very
interesting for QDI circuits synthesis because it exhibits
the notion of mutual exclusion, which plays a valuable
role in quasi delay insensitivity.

4.1. Presentation of the Multi-valued Decision
Diagrams

A MDD is a rooted directed acyclic graph. Each non-

terminal vertex is labeled by a multi-valued variable and
has one out-going arc for each possible value of the
variable. Each terminal vertex is labeled by a value.
Figure 4 presents an example of MDD.

Each path of the MDD from its root to a terminal
vertex maps to an input vector (a state of the input
variables). The value of the terminal vertex specifies the
value that the MDD has to take under this input vector.

The above definition of MDDs does not specify what
the label of a vertex can be. Obviously, it can be input
ports of the circuit: the logical function that specifies the
outputs depends on the inputs.

A

B

C

0 1

0

0

0

1

1

1

S

Figure 4: A simple example of MDD

We also want to be able to use internal variables in
the circuit. To achieve this goal, we consider an internal
variable as a MDD. Therefore, the label of a vertex can
also be another MDD, which specifies an internal
variable.

4.2. Direct and acknowledgment MDDs

A communication channel holds not only data, but

also request and acknowledgment signals. The request
signal is computed with the data, thanks to the 1-of-n DI
code.

However the acknowledgment signal of the input
channels needs to be computed separately. Moreover,

not all input channels are read at each computation level;
the circuit must not acknowledge an input channel that
has not been read.

For each output channel, our model contains a MDD
that specifies the logic function computed and is called a
direct MDD. For each input channel, it contains one
MDD, called an acknowledgment MDD.
Acknowledgment signals are considered as 1-of-n DI
code with n=1: an acknowledgment MDD has only one
terminal, and specifies the conditions under which the
channel must be acknowledged. Figure 5 illustrates the
MDDs of the example 3.4.

Figure 5: MDDs modeling the circuit specified in 2.4.

Figure 6: Result of the factorization over Figure 5

5. Basic gates synthesis from the MDDs

There are several steps to synthesize a circuit using

basic two-input gates. First, a factorization is done
between the different MDDs to share the common
parts. Then, a reduction is applied to decrease the
number of vertices in each MDD. Finally, each node of
each MDD is synthesized using two-input gates.

5.1. Factorization

The factorization algorithm extracts the common

part of a set of MDDs as an internal MDD, as
illustrated in Figure 7.

To preserve the QDI property, the factorization

algorithm must ensure that it extracts at least one node
in each path of the MDD: otherwise, the extracted

MDD could become valid but be ignored in the
calculation of the circuit’s outputs, remaining
unacknowledged and therefore violating the QDI
property. To ensure this, the algorithm only extracts
common parts that include the root vertex. Since we try
all possible ordering of the variables, this restriction
does not limit the efficiency of the algorithm. Figure 6
shows the result of this algorithm when applied to the
MDDs of Figure 5.

Figure 7: Before and after the factorization
of a set of MDDs. E is the common part

extracted from A, B and C.

5.2. Reduction

This step is similar to the reduction of BDDs: it

merges the identical vertices of the MDD, which
decreases their number and thus the size of the circuit.
Note that this is different from factorization: the
reduction acts on the structure of one MDD, whereas
the factorization acts on the logical functions
represented by a set of MDDs, independently of their
structure.

5.3. Synthesis using basic two-input gates

To synthesize the circuit modeled by composed

MDDs, each MDD is synthesized as a block of the
circuit.

The algorithm is specified by the following rules:
• Each arc in a MDD corresponds to a rail in

the circuit.
• Multiple arcs directed to the same vertex

are grouped by an OR gate.
• A non-terminal vertex is implemented as

set of two-input Muller gates that
synchronize each rail of its variable with
the in-going arc. The Muller gates outputs
are the out-going arcs of the vertex.

• A terminal vertex with value i represents
rail number i of the MDD.

A

B

C

0 1

0

0

0

1

1

1

S

A0

A1 C1

C0 S0

S1

0

1

1

1

0

0B1

B0

Figure 8: Example of basic two-input gates
synthesis of a MDD.

Figure 9 presents the synthesized circuit from the

MDDs of Figure 5.

cout_0 1

cout_0 0

s_0 3

s_0 2

s_0 1

s_0 0

cinack_0 0

back_0 0

aack_0 0
opack_0 0

coutack_0 0

sack_0 0

cin_0 1

cin_0 0

b_0 3

b_0 2

b_0 1

b_0 0

a_0 3

a_0 2

a_0 1

a_0 0

op_0 6
op_0 5

op_0 4

op_0 3

op_0 2

op_0 1

op_0 0

Figure 9: Basic two-input gates circuit

synthesized from the MDDs of Figure 5.

6. Technology mapping

We first present a library of asynchronous standard

cells we have developed and called TAL. Then, we
give different results obtained by using this library in
the design of the digit-slice radix 4 ALU, instead of the
ST standard library. Finally we compare our
asynchronous circuit to a synchronous equivalent
circuit.

6.1. TAL library

The TAL library has been developed to design

asynchronous circuits with the aim to reduce their area,
consumption and increase their speed [14]. This library
contains about 160 cells (representing 42
functionalities), and has been designed with the 130nm
technology of STMicroelectronics. The main
functionalities of the library are useful asynchronous
functions as Muller gate, Half-Buffers, Mutex and
complex gates as Muller-Or, Muller-And, …

To clarify what gains should be attributed to a
dedicated asynchronous library, we can view in Table 1
the comparison, between basic cells of the TAL library
and their standard cells equivalent, in terms of number
of transistors and area. For example, the Muller gate
presented in 3.4 is build with 9 transistors in the TAL
library (for a Muller gate with 2 inputs). With standard
cells we have to use an optimized AO222 gate with a
loop as described in Figure 10, made of 14 transistors,
to find the functionality of a Muller gate.

Figure 10 : Muller Gate in standard cells

Function

TAL Lib

Nb of
transistors/
Area (µm2)

Std cells

Nb of
transistors/
Area (µm2)

Gain (area)

Muller 2 9 tr. / 14,12 14 tr. / 20,17 30 %

Muller 4 13 tr. / 18,15 42 tr. / 60,51 70 %

Half-Buffer 28 tr. / 40,34 44 tr. / 62,53 35 %
Table 1 : Differences between TAL and Std

cells implementations of basic functions.

The average gain in term of area for all the TAL library
compared to the standard ST library is around 35%.

6.2. Technology Mapping algorithms

The main difficulty before mapping a library on

asynchronous circuits is to decompose them and ensure
to keep their property of quasi delay insensitivity.

For example, it’s difficult to decompose a Muller

gate with 3 inputs in 2 Muller gates with 2 inputs
without introducing a hazard. This decomposition is
automatic for an OR gate. This is described in Figure
11.

Figure 11 : Naïve Muller decomposition
introduces hazard

In case a), the three inputs of the Muller gate are
different and the output keeps its value 0. After the
decomposition (b), the first Muller gate output switches
while the output of the second one doesn’t change.
Thus the output of the first Muller gate is not
acknowledged causing a possible glitch in the circuit
with the next set of inputs.

The synthesis method presented in 0 ensures that
the circuits obtained are QDI and formed of two-input
gates. Thus the decomposition phase is done and the
technology mapping consists in merging gates to obtain
an optimized circuit following a selected criteria (area,
speed, …). Merging gates do preserve delay
insensitivity.

We decide to implement known synchronous
algorithms of technology mapping [15-17] and adapt
them to asynchronous circuits. Some algorithms of
technology mapping exist for asynchronous circuits
[18-20], but the aim of these algorithms is mainly to
decompose circuits without hazards, and as we have
seen before, the decomposition is solved.

Moreover, technology mapping has been an
important domain of research in the synchronous world
and the resulting algorithms are very powerful. Thus
we extend the method presented in [16] because the
technology mapping algorithm presented in this paper
has really great performances. Thereby we represent
the input library cells as tree of OR, AND and
MULLER gate and we keep the structural relationship
between the library cells using lookup table. These
trees are then mapped on the netlist representing the
circuit with the same algorithms as for synchronous
circuits.

6.3. Results

In the following section, we intend to evaluate in

terms of area the gain due to the TAL library and the
gain due to the technology mapping algorithms.

The circuit netlist of Figure 9 comprises 95 OR
gates and 107 MULLER gates. The Table 2 compares
the number of transistors and the area of the circuit,
before place and route, using the TAL library or the ST
standard library.

Table 2 : Circuits with TAL or ST standard
cells

 TAL library
Standard ST

cells

Nb of transistors 1533 2068

Area (µm2) (before
placement and

routage)
2469 3116,36

We can conclude out of this figure that without any
optimization of the netlist, if we only use TAL cells
instead of the standard cells to build Muller gates, the
number of transistors decreases by 35% and the area of
the circuit decreases by 21%.

Now we want to evaluate the gain brought by the
technology mapping algorithms on the netlist of the
digit-slice radix 4 ALU. We can view results of
algorithms in the Table 3. During the mapping phase,
only complex gates of the TAL library are used as
Muller-Or22, Muller-Or21. OR2 gates are also merged
in OR3 and OR4 gates.

Table 3 : Results of technology mapping
algorithms

 Native TAL netlist
Optimized TAL

netlist

Nb of transistors 1533 1034

Area (µm2) (before
placement and

routage)
2469 1401,95

We can notice a decrease of 32% of the number of
transistors, and a decrease of 43% of the area of the
circuit compared to the same circuit netlist using the
TAL library without technology mapping algorithm
applied. We thus note a decrease of around 50% of the

number of transistors and area compared to the initial
netlist using the ST standard cells library.

Another interesting point is to compare these circuit

characteristics with an equivalent synchronous digit-
slice radix 4 ALU. The asynchronous circuits remain
bigger than their synchronous equivalent because of the
delay insensitive code and the local controls of the
circuit. However our goal is to reduce this difference as
much as possible by applying aggressive technology
mapping algorithms on the circuit and by using cells
library specially designed for asynchronous circuit.

We describe the digit-slice radix 4 ALU using the
VHDL language. As we want to compare our version
to a synchronous circuit, we add a clock in the
description. In fact, the outputs are memorized in the
asynchronous circuit with the Muller gate. In the
synchronous version, we have to add registers on each
output, to achieve this memorization.
To synthesize this circuit, we used Design Analyser
from Synopsys and the ST standard cells library. Table
4 shows the results.

Table 4 : Comparison with the equivalent
synchronous circuit

Optimized TAL

netlist
Synchronous netlist

Nb of transistors 1034 386

Area (µm2) (before
placement and

routage)
1401,95 476, 06

We can conclude that the synchronous circuit is less

than 2,9 times smaller, and contains 2.7 times less
transistors than the asynchronous one.

7. Conclusion

This paper presents a general method to model and

synthesize asynchronous optimized QDI circuits. The
method allows synthesizing circuits using multi-rail
logic and maps them on to single output standard cells.
Direct and reverse (acknowledge) paths are
automatically and jointly synthesized. A first netlist of
the circuit, containing only two-input gates is
generated. Technology mapping is then applied
targeting a dedicated asynchronous library to optimize
the circuit area. Others criteria of optimization could be
selected as well but the paper focuses on area which is
one of the must important challenge.

The method based on Multi-valued Decision
Diagrams, is illustrated on a digit-slice radix 4 ALU.
We present different versions of the same circuit to
evaluate the gain introduced by the asynchronous
library and by the technology mapping algorithm. The
last results show that our circuit is still 2.9 times larger
than the synchronous one.

Future work will be focused on improving the
methodology by working in two directions: logic
synthesis and complex cells specification.

8. References

1. Renaudin, M., Asynchronous circuits and systems: a
promising design alternative. Microelectronic Engineering,
2000. 54(1-2): p. 133 - 149.
2. Dinh Duc, A.V., L. Fesquet, and M. Renaudin. Synthesis
of QDI Asynchronous Circuits from DTL-style Petri Net. in
11th IEEE/ACM International Workshop on Logic &
Synthesis. 2002. New Orleans, Louisiana.
3. Dinh Duc, A.V., et al. TAST CAD Tools. in ACiD-WG
workshop. 2002. Munich, Germany.
4. Martin, A.J., The Limitations to Delay-Insensitivity in
Asynchronous Circuits, in Advanced Research in VLSI, W.J.
Dally, Editor. 1990, MIT Press. p. 263-278.
5. Manohar, R., T.K. Lee, and A.J. Martin. Projection: A
Synthesis Technique for Concurrent Systems. in The 5th IEEE
International Symposium on Asynchronous Circuits and
Systems. 1999.
6. Toms, W.B. QDI Implementation of Boolean Graphs. in
14th UK Asynchronous Forum. 2003.
7. Burns, S.M., General Condition for the Decomposition
of State Holding Elements, in Proc. International Symposium
on Advanced Research in Asynchronous Circuits and
Systems. 1996, IEEE Computer Society Press.
8. Lemberski, I. and M.B. Josephs. Optimal Two-Level
Delay-Insensitive Implementation of Logic Functions. in
PATMOS. 2002. Spain.
9. Nielsen, C.D. Evaluation of Function Blocks for
Asynchronous Design. in eurodac. 1994: icsp.
10. Martin, A.J., The Limitations to Delay-Insensitivity in
Asynchronous Circuits, in Advanced Research in VLSI, W.J.
Dally, Editor. 1990, MIT Press. p. 263--278.
11. Bregier, V., et al. Modeling and Synthesis of multi-rail
multi-protocol QDI circuits. in International Workshop on
Logic Synthesis. 2004.
12. Kam, T., et al., Multi-valued decision diagrams: Theory
and applications. International Journal on Multiple-Valued
Logic, 1998. 4(1-2): p. 9-24.
13. Dreschler, R. and B. Becker, Binary Decision Diagrams,
Theory and Implementation. Kluwer Academic Publishers ed.
1998: Kluwer Academic Publishers.
14. Maurine, P., et al. Static Implementation of QDI
Asynchronous Primitives. in PATMOS: 13th International
Workshop on Power and Timing Modeling, Optimization and
Simulation. 2003.
15. Keutzer, K. DAGON: technology binding and local
optimization by DAG matching. in Proceedings of the 24th
ACM/IEEE conference on Design automation. 1987. Miami
Beach, Florida, United States.
16. Zhao, M. and S.S. Sapatnekar. A new structural pattern
matching algorithm for technology mapping. in The 38th
Conference on Design Automation. 2001. Las Vegas,
Nevada, United States.
17. Matsunaga, Y. On Accelerating Pattern Matching for
Technology Mapping. in International Conference on
Computer Aided Design. 1998. San Jose, California, United
States.
18. Cortadella, J., et al. Decomposition and technology
mapping of speed-independent circuits using Boolean
relations. in Proc. International Conf. Computer-Aided
Design (ICCAD). 1997.
19. Myers, C.J., P.A. Beerel, and T.H.-Y. Meng, Technology
Mapping of Timed Circuits, in Asynchronous Design
Methodologies. 1995, Elsevier Science Publishers. p. 138-
147.
20. Siegel, P.S.K., Automatic Technology Mapping for
Asynchronous Designs. 1995, Stanford University.

