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Abstract 
Quasi delay insensitive circuits are functionally 

independent of delays in gates and wires (except for 
some particular wires). Such asynchronous circuits offer 
high robustness but do not perform well to automatically 
synthesize and optimize. This paper presents a new 
methodology to model and synthesize data path QDI 
circuits. The model used to represent circuits is based on 
Multi-valued Decision Diagrams and allows obtaining 
QDI circuits with two-input gates. Optimization is 
achieved by applying a technology mapping algorithm 
with a library of asynchronous standard cells called 
TAL. This work is a part of the back-end of our synthesis 
flow from high level language. Throughout the paper, a 
digit-slice radix 4 ALU is used as an example to 
illustrate the methodology and show the results. 

 
 

1. Introduction 
 
Asynchronous circuits do not have a global signal to 

synchronize them. Synchronization between blocks is 
locally done. Those circuits show very interesting 
properties such as low power consumption, noise 
emission, security, robustness, reusability, etc [1]. 

 
Today, to adopt the asynchronous technology the 

industry needs powerful asynchronous tools similar to 
synchronous ones. 

 
This work is part of the TAST [2, 3] (Tima 

Asynchronous Synthesis Tool) project, aimed at 
developing and prototyping such tools. The synthesized 
circuits in TAST are quasi-delay insensitive (or QDI 
[4]). QDI circuits are functionally correct independently 
of delays in gates and wires, apart from the assumption 
that some forks are isochronic. This kind of 
asynchronous circuit is particularly robust. But 
robustness has a cost; these circuits usually have more 
transistors than the others, especially when standard cells 
are targeted. Many efforts are directed towards circuit 
optimization and transistor reduction; one of the main 
difficulties is to preserve the property of quasi-delay 
insensitivity [5-9]. 

 

2. Contributions 
 
This paper presents a complete standard cells based 

design flow we have developed as illustrated in Figure 1. 
Our method uses Multi-valued Decision Diagrams as a 
model of the circuit that can be optimized while 
preserving the QDI property. Firstly, the model is 
generated from a CHP description. Secondly, the model 
is optimized. A two-input gates circuit is synthesized 
from the model. Thirdly, a technology mapping 
algorithm produces the final circuit, using gates from a 
library of standard asynchronous cells called TAL 
(TIMA Asynchronous Library). 

This design flow includes a general technology 
mapping algorithm dedicated to QDI circuits. It enables 
to target any standard cells library, including or not 
asynchronous cells. The main objective of this work is to 
reduce the area of the asynchronous circuits. In fact, this 
is one of the main challenge for the asynchronous 
circuits to be adopted. Accordingly, the last part of the 
paper compares results obtained for our asynchronous 
circuits to its synchronous equivalent. 

 

 

Figure 1 : Asynchronous Design Flow 
 
3. Asynchronous Circuits 

 
3.1. Communication channels and handshake 
protocol 

 
In asynchronous circuits, a local mechanism is used 

to perform the synchronization called handshake 



protocol. It relies on two signals: request and 
acknowledgment. When a block needs to transmit data to 
another, it sends a request signal along with the data, and 
holds them until it receives the acknowledgment. The 
request and acknowledgment signals may not be reset 
before the next communication, making two possible 
handshake protocols, well-known as two-phase and four-
phase protocols. Asynchronous circuits considered in 
TAST implement the latter. Request, acknowledgment 
and data are linked together; therefore we consider them 
as a single entity called communication channel. 

 
3.2. Quasi Delay Insensitivity 

 
A circuit is said QDI (Quasi Delay Insensitive) when 

its correct operation does not depend on the delays of 
gates or wires, except for certain wires that form 
isochronic forks [10]. If a circuit is QDI, a transition on 
its input must cause a transition on its output. It is said 
that the transition on the output acknowledges the 
transition on the input. Mutual exclusion plays a very 
important role to prove this causality relationship [11]. 

 
3.3. Delay Insensitive Code 

 
In QDI circuits, a mechanism must guarantee that 

when a channel emits a request, its data are available. To 
achieve this, the request is encoded with the data using a 
1-of-n code: n rails are used to implement n possible 
values, numbered 0 to n-1. When all the rails are '0', 
there is no data and the request is '0'. The channel is said 
invalid. When one of the rails is '1', its number is the 
value of the data, and the request is '1'. The channel is 
said valid. Other codes, when several rails are '1', are out 
of the code, and therefore forbidden. The code is said 
Delay Insensitive since it guarantees that the request 
signal is always synchronized with the data. 

 
3.4. The Muller gate 

 
Asynchronous circuits need a gate that synchronizes 

several signals. This gate is called Muller gate (or C-
element): when all inputs are equal, the output takes their 
value; when inputs are different, the output holds its 
value. Its symbol is a circle. 

 
3.5. An example 

 
Throughout this article, we illustrate our method with 

the example presented in Figure 2. This example is a 
digit-slice radix 4 ALU: it computes the function Op 
between its operands A and B, using the carry Cin and 
Cout when needed (addition and subtraction). Radix 4 
was chosen to demonstrate that the method is not limited 
to dual rail. The ALU can compute seven different 
operations (add, sub, and, or, xor, neg, not); therefore Op 
is encoded with a 1-of-7 code. The CHP code is given in 
Figure 3. 
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Figure 2: A digit-slice radix 4 ALU. 
 
process  alu_digit_slice 
port (  op: in di MR [ 7], a: in di MR [ 4], 
  b: in di MR [ 4], cin: in di MR [ 2] , 
  s: out di MR [ 4], cout: out di MR [ 2] ; )  
begin 
variable  op: MR[ 7], a: MR[ 4], b: MR[ 4],c : MR[ 2] ;  
*[ 
Op?op; 
@[ 
op = '0' => A?a, B?b;    --add 
 @[ a +b<3 => Cout!0, [Cin?c; S!a+b+c];  --K  
  a +b=3 => Cin ?c; [ Cout ! c, S !( c=0?3: 0)] ;  --P  
  a+b >3 => Cout ! 1, [ Cin?c; S !( a+b+c- 4)] ; --G  
 op = ' 1'  => A ?a, B ?b;     --sub  
 @[ b - a<3 => Cout ! 0, [ Cin ?c; S ! b- a+c] ;  --K  
  b - a=3 => Cin?c; [ Cout ! c,S !( c=0?3: 0)] ;  --P  
  b - a>3 => Cout ! 1, [ Cin?c; S! ( b- a+c- 4)] ; --G  
 op = ' 2'  => A ?a, B ?b;  S! a and  b;  --and  
 op = ' 3'  => A ?a, B ?b; S ! a or  b; --or  
 op = ' 4'  => A ?a, B ?b; S ! a xor  b; --xor  
 op = ' 5'  => A ?a; S !(not  a +1) ; --neg  
 op = ' 6'  => A ?a; S !(not  a ) ;  --not  
]] 
end   

Figure 3: CHP code of the example 
 

4. Circuit modeling using MDDs 
 
The first step of our method is to model the circuit 

with Multi-valued Decision Diagrams (MDDs). It is 
presented in this section. 

A MDD [12] is a generalized BDD (Binary Decision 
Diagram, [13]) structure. This structure is very 
interesting for QDI circuits synthesis because it exhibits 
the notion of mutual exclusion, which plays a valuable 
role in quasi delay insensitivity. 

 
4.1. Presentation of the Multi-valued Decision 
Diagrams 

 
A MDD is a rooted directed acyclic graph. Each non-

terminal vertex is labeled by a multi-valued variable and 
has one out-going arc for each possible value of the 
variable. Each terminal vertex is labeled by a value. 
Figure 4 presents an example of MDD. 

Each path of the MDD from its root to a terminal 
vertex maps to an input vector (a state of the input 
variables). The value of the terminal vertex specifies the 
value that the MDD has to take under this input vector. 

The above definition of MDDs does not specify what 
the label of a vertex can be. Obviously, it can be input 
ports of the circuit: the logical function that specifies the 
outputs depends on the inputs. 
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Figure 4: A simple example of MDD 
 



We also want to be able to use internal variables in 
the circuit. To achieve this goal, we consider an internal 
variable as a MDD. Therefore, the label of a vertex can 
also be another MDD, which specifies an internal 
variable. 

 
4.2. Direct and acknowledgment MDDs 

 
A communication channel holds not only data, but 

also request and acknowledgment signals. The request 
signal is computed with the data, thanks to the 1-of-n DI 
code. 

However the acknowledgment signal of the input 
channels needs to be computed separately. Moreover, 

not all input channels are read at each computation level; 
the circuit must not acknowledge an input channel that 
has not been read. 

For each output channel, our model contains a MDD 
that specifies the logic function computed and is called a 
direct MDD. For each input channel, it contains one 
MDD, called an acknowledgment MDD. 
Acknowledgment signals are considered as 1-of-n DI 
code with n=1: an acknowledgment MDD has only one 
terminal, and specifies the conditions under which the 
channel must be acknowledged. Figure 5 illustrates the 
MDDs of the example 3.4. 

 
 

 

Figure 5: MDDs modeling the circuit specified in 2.4. 
 

 

Figure 6: Result of the factorization over Figure 5 
 

5. Basic gates synthesis from the MDDs 
 
There are several steps to synthesize a circuit using 

basic two-input gates. First, a factorization is done 
between the different MDDs to share the common 
parts. Then, a reduction is applied to decrease the 
number of vertices in each MDD. Finally, each node of 
each MDD is synthesized using two-input gates. 

5.1. Factorization 
 
The factorization algorithm extracts the common 

part of a set of MDDs as an internal MDD, as 
illustrated in Figure 7. 

 
To preserve the QDI property, the factorization 

algorithm must ensure that it extracts at least one node 
in each path of the MDD: otherwise, the extracted 



MDD could become valid but be ignored in the 
calculation of the circuit’s outputs, remaining 
unacknowledged and therefore violating the QDI 
property. To ensure this, the algorithm only extracts 
common parts that include the root vertex. Since we try 
all possible ordering of the variables, this restriction 
does not limit the efficiency of the algorithm. Figure 6 
shows the result of this algorithm when applied to the 
MDDs of Figure 5. 

 

  

Figure 7: Before and after the factorization 
of a set of MDDs. E is the common part 

extracted from A, B and C. 
 

5.2. Reduction 
 
This step is similar to the reduction of BDDs: it 

merges the identical vertices of the MDD, which 
decreases their number and thus the size of the circuit. 
Note that this is different from factorization: the 
reduction acts on the structure of one MDD, whereas 
the factorization acts on the logical functions 
represented by a set of MDDs, independently of their 
structure. 

 
5.3. Synthesis using basic two-input gates 

 
To synthesize the circuit modeled by composed 

MDDs, each MDD is synthesized as a block of the 
circuit. 

The algorithm is specified by the following rules: 
• Each arc in a MDD corresponds to a rail in 

the circuit. 
• Multiple arcs directed to the same vertex 

are grouped by an OR gate. 
• A non-terminal vertex is implemented as 

set of two-input Muller gates that 
synchronize each rail of its variable with 
the in-going arc. The Muller gates outputs 
are the out-going arcs of the vertex. 

• A terminal vertex with value i represents 
rail number i of the MDD. 
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Figure 8: Example of basic two-input gates 
synthesis of a MDD. 

 
Figure 9 presents the synthesized circuit from the 

MDDs of Figure 5. 
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Figure 9: Basic two-input gates circuit 

synthesized from the MDDs of Figure 5. 
 

6. Technology mapping 
 
We first present a library of asynchronous standard 

cells we have developed and called TAL. Then, we 
give different results obtained by using this library in 
the design of the digit-slice radix 4 ALU, instead of the 
ST standard library. Finally we compare our 
asynchronous circuit to a synchronous equivalent 
circuit. 

 
6.1. TAL library 

 
The TAL library has been developed to design 

asynchronous circuits with the aim to reduce their area, 
consumption and increase their speed [14]. This library 
contains about 160 cells (representing 42 
functionalities), and has been designed with the 130nm 
technology of STMicroelectronics. The main 
functionalities of the library are useful asynchronous 
functions as Muller gate, Half-Buffers, Mutex and 
complex gates as Muller-Or, Muller-And, … 

To clarify what gains should be attributed to a 
dedicated asynchronous library, we can view in Table 1 
the comparison, between basic cells of the TAL library 
and their standard cells equivalent, in terms of number 
of transistors and area. For example, the Muller gate 
presented in 3.4 is build with 9 transistors in the TAL 
library (for a Muller gate with 2 inputs). With standard 
cells we have to use an optimized AO222 gate with a 
loop as described in Figure 10, made of 14 transistors, 
to find the functionality of a Muller gate. 



 

Figure 10 : Muller Gate in standard cells 
 

Function 

TAL Lib 

Nb of 
transistors/ 
Area (µm2) 

Std cells 

Nb of 
transistors/ 
Area (µm2) 

Gain (area) 

Muller 2 9 tr. / 14,12 14 tr. / 20,17 30 % 

Muller 4 13 tr. / 18,15 42 tr. / 60,51 70 % 

Half-Buffer 28 tr. / 40,34 44 tr. / 62,53 35 %  
Table 1 : Differences between TAL and Std 

cells implementations of basic functions. 
 

The average gain in term of area for all the TAL library 
compared to the standard ST library is around 35%. 

 
6.2. Technology Mapping algorithms 

 
The main difficulty before mapping a library on 

asynchronous circuits is to decompose them and ensure 
to keep their property of quasi delay insensitivity. 

 
For example, it’s difficult to decompose a Muller 

gate with 3 inputs in 2 Muller gates with 2 inputs 
without introducing a hazard. This decomposition is 
automatic for an OR gate. This is described in Figure 
11. 

 

Figure 11 : Naïve Muller decomposition 
introduces hazard 

 

In case a), the three inputs of the Muller gate are 
different and the output keeps its value 0. After the 
decomposition (b), the first Muller gate output switches 
while the output of the second one doesn’t change. 
Thus the output of the first Muller gate is not 
acknowledged causing a possible glitch in the circuit 
with the next set of inputs. 

The synthesis method presented in 0 ensures that 
the circuits obtained are QDI and formed of two-input 
gates. Thus the decomposition phase is done and the 
technology mapping consists in merging gates to obtain 
an optimized circuit following a selected criteria (area, 
speed, …). Merging gates do preserve delay 
insensitivity. 

We decide to implement known synchronous 
algorithms of technology mapping [15-17] and adapt 
them to asynchronous circuits. Some algorithms of 
technology mapping exist for asynchronous circuits 
[18-20], but the aim of these algorithms is mainly to 
decompose circuits without hazards, and as we have 
seen before, the decomposition is solved. 

Moreover, technology mapping has been an 
important domain of research in the synchronous world 
and the resulting algorithms are very powerful. Thus 
we extend the method presented in [16] because the 
technology mapping algorithm presented in this paper 
has really great performances. Thereby we represent 
the input library cells as tree of OR, AND and 
MULLER gate and we keep the structural relationship 
between the library cells using lookup table. These 
trees are then mapped on the netlist representing the 
circuit with the same algorithms as for synchronous 
circuits. 

 
6.3. Results 

 
In the following section, we intend to evaluate in 

terms of area the gain due to the TAL library and the 
gain due to the technology mapping algorithms. 

The circuit netlist of Figure 9 comprises 95 OR 
gates and 107 MULLER gates. The Table 2 compares 
the number of transistors and the area of the circuit, 
before place and route, using the TAL library or the ST 
standard library. 

 

Table 2 : Circuits with TAL or ST standard 
cells 

 TAL library 
Standard ST 

cells 

Nb of transistors 1533 2068 

Area (µm2) (before 
placement and 

routage) 
2469 3116,36 

 

We can conclude out of this figure that without any 
optimization of the netlist, if we only use TAL cells 
instead of the standard cells to build Muller gates, the 
number of transistors decreases by 35% and the area of 
the circuit decreases by 21%. 

Now we want to evaluate the gain brought by the 
technology mapping algorithms on the netlist of the 
digit-slice radix 4 ALU. We can view results of 
algorithms in the Table 3. During the mapping phase, 
only complex gates of the TAL library are used as 
Muller-Or22, Muller-Or21. OR2 gates are also merged 
in OR3 and OR4 gates. 

 

Table 3 : Results of technology mapping 
algorithms 

 Native TAL netlist 
Optimized TAL 

netlist 

Nb of transistors 1533 1034 

Area (µm2) (before 
placement and 

routage) 
2469 1401,95 

 

We can notice a decrease of 32% of the number of 
transistors, and a decrease of 43% of the area of the 
circuit compared to the same circuit netlist using the 
TAL library without technology mapping algorithm 
applied. We thus note a decrease of around 50% of the 



number of transistors and area compared to the initial 
netlist using the ST standard cells library. 

 
Another interesting point is to compare these circuit 

characteristics with an equivalent synchronous digit-
slice radix 4 ALU. The asynchronous circuits remain 
bigger than their synchronous equivalent because of the 
delay insensitive code and the local controls of the 
circuit. However our goal is to reduce this difference as 
much as possible by applying aggressive technology 
mapping algorithms on the circuit and by using cells 
library specially designed for asynchronous circuit. 

We describe the digit-slice radix 4 ALU using the 
VHDL language. As we want to compare our version 
to a synchronous circuit, we add a clock in the 
description. In fact, the outputs are memorized in the 
asynchronous circuit with the Muller gate. In the 
synchronous version, we have to add registers on each 
output, to achieve this memorization. 
To synthesize this circuit, we used Design Analyser 
from Synopsys and the ST standard cells library. Table 
4 shows the results.  

 

Table 4 : Comparison with the equivalent 
synchronous circuit 

 
Optimized TAL 

netlist 
Synchronous netlist 

Nb of transistors 1034 386 

Area (µm2) (before 
placement and 

routage) 
1401,95 476, 06 

 
We can conclude that the synchronous circuit is less 

than 2,9 times smaller, and contains 2.7 times less 
transistors than the asynchronous one. 

 
7. Conclusion 

 
This paper presents a general method to model and 

synthesize asynchronous optimized QDI circuits. The 
method allows synthesizing circuits using multi-rail 
logic and maps them on to single output standard cells. 
Direct and reverse (acknowledge) paths are 
automatically and jointly synthesized. A first netlist of 
the circuit, containing only two-input gates is 
generated. Technology mapping is then applied 
targeting a dedicated asynchronous library to optimize 
the circuit area. Others criteria of optimization could be 
selected as well but the paper focuses on area which is 
one of the must important challenge. 

The method based on Multi-valued Decision 
Diagrams, is illustrated on a digit-slice radix 4 ALU. 
We present different versions of the same circuit to 
evaluate the gain introduced by the asynchronous 
library and by the technology mapping algorithm. The 
last results show that our circuit is still 2.9 times larger 
than the synchronous one. 

Future work will be focused on improving the 
methodology by working in two directions: logic 
synthesis and complex cells specification. 
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