
Modeling and Synthesis of Multi-rail Multi-protocol QDI Circuits
V. Brégier, B. Folco, L. Fesquet, M. Renaudin

TIMA laboratory, 46, avenue Felix Viallet
30031 GRENOBLE cedex-France

Vivian.Bregier@imag.fr

Abstract
Quasi-Delay-Insensitive (QDI) circuits behave correctly

independently of arbitrary delays in gates or wires, which
gives them many advantages. However, there are a lot of
restrictions for the design of this type of circuits, making
them difficult to synthesize automatically. This paper
presents a new methodology to model and synthesize QDI
asynchronous circuits. The targeted circuits use the multi-
rail data encoding, and use different handshaking protocols
for channel-based communications. The proposed synthesis
algorithms are based on Multi-valued Decision Diagrams.
This article proves formally that the circuits generated with
this technique are QDI. An example is given to illustrate the
circuit modeling and the synthesis.

1 Introduction
Asynchronous circuits are circuits that do not have a

global signal to synchronize them. The synchronisation
between the blocks is done locally. Those circuits show very
interesting properties: speed, low power consumption, noise
emission, security, robustness, reusability, etc.

Today, the industry needs powerful tools similar to the
synchronous ones to start with the asynchronous technology.

This work is part of the TAST [1, 2] (Tima Asynchronous
Synthesis Tool) project, which aims to develop such tools.
The synthetized circuits in TAST are quasi-delay
insensitive, or QDI, which are the most robust asynchronous
circuits [3]. Today, such circuits use significantly more
transistors than their synchronous equivalents. Many efforts
are directed towards the circuit optimisation and transistor
reduction. The main difficulty is to preserve the property of
quasi-delay insensivity.

In this paper, we present a technique to model and
synthetize a QDI circuit. The model expresses both the
direct and the return (acknowledgment) path, and supports
different communication protocols. We prove that the circuit
generated from this model is QDI. Then, it is possible to
transform the circuit through its model, and thus optimize it,
while preserving its QDI property.

2 Quasi-delay insensitivity

2.1 Communication protocols
The behavioral description of each asynchronous block is

based on the protocol used to communicate with its
neighbors. To implement a bidirectional indication, two
kinds of protocols are usually used: the two-phase protocol
(called « half-handshake ») and the four-phase protocol
(called « full-handshake ») [4]. In all cases, it is important to

note that every transaction of the emitter is signaled by a
request signal and acknowledged by a signal of the receiver.
In this paper we consider four-phase protocols (see Figure
1). A request transition is followed by an acknowledgement
transition, and an acknowledgement transition is followed
by a request transition.

Figure 1 shows the following different phases of a four-
phase protocol:

Phase 1: The receiver receives a request, makes the
computation and sends the acknowledgement signal.

Phase 2: The emitter lowers the request signal.
Phase 3: The receiver lowers the acknowledgment signal.
Phase 4: The emitter can send a new request if data are

available.

Request

Ack.

Phase 1 Phase 2 Phase 3 Phase 4
Figure 1: The four-phase protocol

In a computation, the communications are composed of
several phases. However, the sequential scheduling between
the input and the output of these phases is not the more
efficient method. We can schedule them differently, with
different protocols, to reduce the protocol latency, and
increase the circuit performances. The generated circuit will
depend on the protocol.

The first implemented protocol used to synthesize circuits
is a four-phase sequential protocol. This protocol is the
simplest. The second is a four-phase WCHB protocol
(“Weak Condition Half-Buffer”, [5]). It schedules the
different phases of the communication and thus increases
the performances of the circuit.

Input
Request

Input
Ack.

Output
Request

Output
Ack.

Figure 2: Scheduling of the sequential protocol

• Sequential protocol:
This protocol schedules the phases sequentially, as shown

Figure 2. When the circuit receives a request, it computes
the output, sends the output request, waits for the output
acknowledgment, and acknowledges its inupts.

• WCHB Protocol (Weak Condition Half-Buffer) [5]
Figure 3 shows the operation performed by the “WCHB

protocol :
• When the input raises the request and the circuit is

ready for a computation, the circuit produces the output
result. It raises the output request and the input
acknowledgment.

• Then the input may then change its value, so the circuit
has a half buffer to keep the output value while it has
not been acknowledged.

• When the input has lowered its request and the output
has raised its acknowledgment, the circuit lowers the
output request and the input acknowledgment.

• When the output has lowered its acknowledgment, the
circuit can make a new computation.

Input
Request

Input
Ack.

Output
Request

Output
Ack.

Figure 3: Scheduling of the WCHB protocol

2.2 Data encoding
We have seen that the communication protocol uses a

request-acknowledgment cycle. But if the circuit is delay
insensitive, we have to guarantee the data correctness on the
input when the request arrives. One way to do this is to
encode the request signal with the data, in a delay-
insensitive encoding.

In this approach we have the following property: the data
is detected unambiguously, without any temporal
assumption. It implies robustness, portability and ease of
use.

There are several delay-insensitive codes. The 1-of-N
encoding (also called “multi-rail”), where N is the number
of values we want to encode, is presented here. In this code,
a data is invalid if all the wires have the value 0. If rail
number i has the value 1, then the data has the value i .
Codes where more than one wire has the value 1 are
considered as errors.

1001

00

Invalid

ValidValid 0 1

Figure 4: 1-of-2 code (dual-rail). Having both rails to 1 is
forbidden. To reach the value 0 (encoded 01) from the

value 1 (10), the data has to become invalid (00).

It is the most common DI code. The 1-of-2 code (also
called “dual-rail”), illustrated Figure 4, is one of the most
popular, because it is similar to the binary encoding used in
synchronous circuits. However, some works reported studies

on the design of 1-of- N asynchronous circuits, with 2>N
[6].

2.3 Quasi Delay Insensitivity
A definition of the Quasi-delay insensitive (QDI) circuits

is given by Alain Martin in [3]: QDI circuits are those
whose correct operation does not depend on the delays of
operators or wires, except for certain wires that form
isochronic forks.

A fork in a circuit corresponds to a gate output being used
as the input of more than one gate, as illustrates Figure 5.

G2

G

G1

x

x2

x1
y

z

Figure 5: A fork

If a fork is isochronic, some transitions on x do not need
to be acknowledged by a transition of both y and z – the
output of gates 1G and 2G , respectively. For instance,
transition ↑x causes transition ↑1x and ↑2x .
Transition ↑1x causes (and is acknowledged by)
transition ↑y . But transition ↑2x does not cause a

transition on z . Hence, the completion of transition ↑2x has
to be justified by timing assumptions. We assume that when
transition ↑1x has been acknowledged by transition ↑y ,

transition ↑2x is also completed. This is the “isochronicity
assumption” [3].

3 Circuit description using MDDs

3.1 Multi-valued Decision Diagrams
Multi-valued Decision Diagrams are a generalization of

BDDs (Binary Decision Diagrams, [7]), presented in [8] :
Definition 1 (Multi-valued Decision Diagram) :

A Multi-valued Decision Diagram taking values in Y is a
rooted directed acyclic graph:
Each non-terminal vertex v is labeled by a multi-valued
variable ()vvar , which can take values in the

range ()vrange . Vertex v has arcs directed towards

()vrange children vertices, denoted ()vchildk

for ()vrangek ∈ .
Each terminal vertex u is labeled by a value

() Yuvalue ∈ .
We also define a path of a MDD, since this notion will

play a very important role
Definition 2 (Path) :

Let M be a MDD.
Let kvvv ,,, 10 � be non-terminal vertices of M and u a

terminal vertex of M , let knnn ,,, 10 � be integers such

that for all ki ≤≤0 , ()ii vrangen ∈ .

()unvnvnv kk ,:,,:,: 1100 � is a path of M if and only if for

all ki ≤≤0 , () 1+= iin vvchild
i

, and () uvchild knk
= .

3.2 Semantic of a MDD
We want to describe the circuit that is to be synthesized

with a MDD. For this, we need to attach a specific meaning
to the MDD that is modeling the circuit. Figure 6 illustrates
an example of MDD, describing a small ALU : the circuit
described has two dual-rail inputs, A and B, and one 3-rails
input, I, which selects the operation computed : A and B, A
or B, or A.

What makes the decision diagram structure interesting for
our needs is that it exhibits the mutual exclusivity between
the values of an input: a given input can only have one value
during a computation. Each path of the MDD corresponds to
a possible state of the circuit inputs. At a given instant, only
one path can describe the values of these inputs.

We define the notions of active, inactive and transient
path:

Let ()unvnvnvC kk ,:,,:,: 1100 �= be a path of a given
MDD.
Definition 3 (Active path) :

C is active if and only if for all ki ≤≤0 , ()ivvar is valid

and has the value in .

Definition 4 (Inactive path) :
C is inactive if and only if for all ki ≤≤0 , ()ivvar is
invalid.

Definition 5 (Transient path) :
C is transient if and only if for all ki ≤≤0 , if ()ivvar is

valid, then its value is in .
The output of the circuit implements the 4-phase protocol.

The circuit has two computing phases: up-going phase and
down-going phase.
• Up-going phase: The output of the circuit stays invalid as
long as no path of the MDD is active. It can only become
valid if a path is active. When the output becomes valid, the
circuit gets in the down going phase.
• Down-going phase: Let C be the active path at the
beginning of the down-going phase. The output of the
circuit stays valid as long as C is transient. It can only
become invalid if C becomes invalid. When the output
becomes invalid, the circuit gets in the up-going phase.

Note that the different path of a MDD are mutually
exclusive: during a computation, two distinct path cannot
both be active.

3.3 Acknowledgment
The circuits which we want to generate must implement

the 4-phase protocol. So we have to produce the output, but
also the signals that acknowledge the inputs. To produce
such signals, we extract from a MDD the needed

information to acknowledge each input, in the form of
secondary MDDs, or acknowledgement MDDs.

An acknowledgement MDD specifies a signal. We
consider a signal as a particular case of multi-rail, which is
valid when the signal is 1 and invalid when the signal is 0. It
has only one possible valid value, which implies only one
terminal vertex in the MDD.

I

AA A

B B B

0 1

S

0
1

2

0 0
0

0 0
0

1 1 1

1 1
1

Figure 6: An example of
MDD, describing a small
ALU. The circuit has 3

inputs, A, B and I.

I

+ Ø

BackIack Aack

+ +

0
1

2

Figure 7: An example of

acknowledgement MDDs.
+ denotes the (unique)
valid value, and Ø the

invalid value.

As shows Figure 7, in some cases an input of the circuit
must not be read to produce the output. Then, it must not be
acknowledged: its acknowledgement signal has to stay
invalid. Therefore, we add a special terminal vertex, noted
Ø, which allows some path to maintain the signal invalid.

To generate the acknowledgement MDD of an input
variable, we have to isolate the reading information of this
variable, as shows the algorithm Figure 8.

exract(mdd, variable)=
 reurn copy_until(root(mdd), variable);

copy_until(vertex, variable) =
 if is_terminal(vertex) then
 return build_terminal(Invalid);
 else if var(vertex) == variable then
 return build_terminal(Valid);
 else
 for i in range(vertex) do
 c = child(i, node);
 childs[i] = copy_until(c, variable);
 v = var(vertex);
 r = ramge(vertex);
 return build_vertex(v, r, childs);

Figure 8: Algorithm of extraction of the

acknowledgement MDD of an input variable from a
MDD

The inputs must not be acknowledged before the output is
produced; otherwise the inputs might be invalidated by the
environment before the circuit produces the output. In fact,
we must be able to encode the different implementations of
the 4-phase protocol (sequential, WCHB, etc.) in the MDD
and the acknowledgement MDDs. To do this, we modify
them, to encode the protocol information

• Sequential implementation

I

AA A

B B B

0 1

S

0
1

2

0 0
0

1 1
1

1
110 0

0

I

+ Ø

BackIack Aack

+ +

Sack SackSack

0
1

2

Figure 9: An example of MDD and acknowledgement

MDD using sequential protocol

The four phases of the protocol are sequential: we have to
wait for the acknowledgement of the output to acknowledge
the inputs. It is sufficient to add a ackS vertex at the root of
each acknowledgement MDD, as shown Figure 9. Then,
each input will only be acknowledged when the
acknowledgement signal of the output has been received.
• WCHB implementation

I

AA A

B B B

0 1

S

Sack

0
1

2

0 0 0
1 1

1

1
110 0

0

I

+ Ø

BackIack Aack

+ +

V(S) V(S)V(S)

0
1

2

Figure 10: An example of MDD and acknowledgement
MDD using WCHB protocol V(S) is an input signal of
the circuit, computing the validity of the output data.

Here, the protocol synchronizes the up-going and down-
going phases of the input and output channels, as explained
in section �2.1.To encode this, we insert a ()SV vertex
(corresponding to the validity of the output)1 at the root of
each acknowledgement MDD, and a ackS vertex at the root
of the MDD.

The ackS vertex on the MDD will make the circuit
produce the output only when the acknowledgment signal of
the output is low, and keep the output active until it has been
acknowledged by the output, and thus represents the half-

1We consider that the validity of the output is calculated

by the environment, therefore it is an input of the circuit.

buffer needed. The ()SV on the acknowledgment MDDs
makes the circuit acknowledge its inputs as soon as the
output is produced. Figure 10 illustrates how the WCHB
protocol is modeled in the representation.

4 Synthesis

4.1 Generation of the MDD
We show here how to generate a MDD from a boolean

expression. The boolean expression has to express several
things:
• the information that an input must be read or not,
• the value that the output must take, depending on the

inputs read,
• all this, keeping in mind that the inputs can take more

than two values (multi-rail).
For the first statement, we decide that an input that does

not appear in a branch of the expression will not be read in
that branch. This means that for a dual rail input b , we will

not be allowed to simplify bb ∨ , since this would mean not
reading b anymore.

The expressions are constructed with a generalization of
the boolean operations, as presented in [9]:
• A product-type operation, ∧ , that generalizes the

boolean and
• A sum-type operation, ∨ , that generalizes the boolean

or
• Literal unary operations that generalize the boolean

not, defined by
�
�
� ∈−

=
otherwise

Sxifm
x S

0
1

, where m m

is the number of rails of x and S is a subset of the
values that x can take: []1,0 −⊂ mS .

Theorem 1
Every multiple-valued function can be decomposed with
respect to a variable ix , as

() �
−

=
=∧=

1

0
1 ,

m

j
jx

j

in
i

fxxxf �

where ()niijx
xxjxxff

i
�� ,,,, 111 +−= = are co-factors of

f with respect to ix .
We use �Theorem 1 to build the MDD, as shows Figure 11.
As an example, we take the following expression, where

i is a 1-of-3 input, a and b are 1-of-2 inputs:
()() ()() ()aibaibai ∧∨∨∧∨∧∧ 210

This expression represents a multiplexer.
For this expression, if we want to implement a sequential

communication protocol, we obtain the MDDs of Figure 9.
If we want to implement a WCHB communication

protocol, we obtain the MDDs of Figure 10.

build_mdd(expr) =
 if is_constant(expr) then
 return build_terminal(expr);
 else
 a = get_some_variable(expr);
 for i in range(a) do
 cofact = cofactor(expr, a, i);
 c[i] = build_mdd(cofact);
 return build_vertex(a, range(a), c);

Figure 11: Algorithm of construction of a MDD from an

expression

4.2 Circuit Synthesis
We present here an algorithm to synthesize a circuit

modeled by a MDD. This algorithm synthesizes circuits
similar to DIMS [10], but with multi-rail inputs and outputs,
and with a protocol. We use the same algorithm to
synthesize the direct path of the circuit (to generate the
output), and the return path (to generate the
acknowledgement of the inputs).

As shown Figure 12, for each path of the MDD, we
generate a Muller C-element, with each vertex of the path as
inputs. Then, we regroup all paths that produce the same
value of the output with an “Or” gate. The output of this
gate is a wire of the output of the circuit. Thus, the circuits
obtained are two level logic circuits. The first level is
composed of Muller gates, the second level of OR gates.

array_of_lists tmp;

synthesize(mdd m) =
 iter_path(root(m), empty_list());
 for i in range(m)
 out[i] = create_or(tmp[i]);

iter_path(vertex v, wires_list w) =
 if is_teminal(v) then
 m = create_muller(w);
 add_to_list(m, tmp[value(v)]);
 else
 for i in range(v) do
 curr_w = get_wire(var(v), i);
 new_w = add_to_list(curr_w, w);
 iter_path(child(i, v), new_w);

Figure 12: Algorithm of synthesis of the circuit described

by a MDD.

Further decomposition and optimization of the two-level
circuits is beyond the scope of this paper. It is currently
investigated in the group.

Figure 13 shows the circuit synthesized using the MDDs
of Figure 9, which implements a sequential protocol; Figure
14 shows the circuit synthesized using the MDDs of Figure
10, which implements a WCHB protocol. The WCHB
protocol requires a little extra logic, but the circuit will run
faster.

I0
A0

B0
I0

A0

B1

I0
A1

B0

I0
A1

B1

I1
A0

B0

I1
A0

B1

I1
A1

B0

I1
A1

B1

I2

A0

I2

A1

S0

S0

Sack

I1I0

Back

Aack

Iack

I0
A0

B0
I0

A0

B1

I0
A1

B0

I0
A1

B1

I1
A0

B0

I1
A0

B1

I1
A1

B0

I1
A1

B1

I2

A0

I2

A1

S0

S0

I1I0

Back

Aack

Iack

Sack

Figure 13: QDI Circuit

using sequential protocol
Figure 14: QDI Circuit
using WCHB protocol

5 Demonstration
In the previous parts, we have shown a method to

synthesize circuits from a MDD representation. We claimed
that the circuits synthesized are QDI, but it is not obvious.
In this part, we prove formally that the circuit generated
from a MDD is really QDI.

5.1 Quasi-delay insensibility
[11] shows a necessary and sufficient condition for a set

of production rules to be quasi-delay insensitive. We quote a
few definitions for this theorem:
Definition 6 (Production rule) :

A production rule is a construct of the form tG � , where
t is a transition and G is a boolean expression known as
the guard of the production rule.
A gate with output x , pull-up network +B and pull-down

network −B , corresponds to the two following production
rules: ↓↑ −+ xBxB ��

Definition 7 (Result) :
We define the predicate R, the result of a transition:

() xxR =↑ and () xxR ¬=↓ .

Definition 8 (Non-interference) :
The production rules ↑+ xB � and ↓− xB � are said
to be non-interfering in a computation if and only if

−+ ¬∨¬ BB is always true in the computation.
A set of production rules is non-interfering if and only if
every production rule in the set is non-interfering.

Definition 9 (Stability) :
A production rule tG � is said to be stable in a
computation if and only if G can change from true to
false only in those states of the computation in which ()tR

holds. A production rule set is said to be stable if and only
if every production rule in the set is stable.

Theorem 2 (Quasi-delay insensitivity) :
A circuit is quasi-delay insensitive if and only if the
production rule set describing it is stable and non-
interfering.
�Theorem 2 is based on the notion of production rules.

Therefore, we have to generate a set of production rules
describing the circuit to apply this theorem, and prove that
the circuit is QDI.

5.2 Generation of production rules
We need to generate the production rules describing the

circuit that we want to synthesize from a given MDD. We
generate production rules from the MDD specifying the
outputs and the acknowledgement.

Moreover, the circuit model used in [11] is closed (each
gate output is the input of another gate), so we also have to
define the production rules of the environment of the circuit.
We know that the environment implements the four-phase
protocol; it is then easy to generate those production rules.

5.2.1 Production rules for the MDD
In this part, the production rules corresponding to the

synthesized circuit are generated. Let’s consider, for each
terminal vertex, all paths that lead to it:

Let f be a terminal vertex of the MDD,

let ()fsnsnsnC i

k

i

k

iiii
i ii ,:,,:,: 1100 �= be all the paths of the

MDD leading to f .

Let i
jS be the i

js th child of input ()i
jnvar . Let fY be the

f th child of the output digit.
We generate several production rules for vertex f :
• Some production rules specify the up going phase:
The wire corresponding to f must go to 1 if iC , one of

the paths, becomes active:
↑∨∨∨ fp YCCC ��10

↑∧∧∧ i
i

k

ii CSSS i ��10 , for pi ≤≤0

• Some production rules specify the down going
phase:

The wire corresponding to f must go to 0 if all the paths,
are inactive:

↓¬∧∧¬∧¬ fp YCCC ��00

↓¬∧∧¬∧¬ i
i

k

ii CSSS i ��10 , for pi ≤≤0

5.2.2 Production rules for the environment
To use the theorem, the circuit needs to be closed. This is

obtained by closing the circuit with an environment which
must be modeled too. We know that the environment
follows the four-phase protocol.

For each input A , we have to generate two production
rules: ↑¬ iack AA � and ↓iack AA � , where ackA is the
acknowledgement signal of A , and i the value read on A
during the computation.

Similarly, for the digit Y , we define two production rules:
• ↑∨∨∨ ackn YYYY ��10

• ↓¬∧∧¬∧¬ ackn YYYY ��10

where ackY is the acknowledgement signal of Y , and n its
number of wires.

5.3 Non-Interference of the production rules

Let’s consider two production rules, ↑+ xB � and
↓− xB � . They are non-interfering in a computation if and

only if −+ ¬∨¬ BB is always true during the computation.
First, we show that the production rules for a path iC of

the MDD are non-interfering:
↑∧∧∧ i

i

k

ii CSSS i ��10 , ↓¬∧∧¬∧¬ i
i

k

ii CSSS i ��10

We have to show that
() ()i

k

iii

k

ii
ii SSSSSSA ¬∧∧¬∧¬¬∨∧∧∧¬= �� 1010

is always true during the computation.
() ()()

()
()

1
000

1100

1010

=
∧∧∧¬=

¬∧∧∧¬∧∧¬∧¬=

¬∧∧¬∧¬∧∧∧∧¬=

A

A

SSSSSSA

SSSSSSA
i

k

i

k

iiii

i

k

iii

k

ii

ii

ii

�

�

��

So A is always true, the production rules for the paths
are non-interfering.

Let f be a terminal vertex of the MDD, corresponding to

the output wire fY . The production rules acting on fY are:

↑∨∨ fp YCCC ��10 , ↓¬∧¬∧¬ fp YCCC ��10

We have to show that
() ()pp CCCCCCB ¬∧∧¬∧¬¬∨∨∨∨¬= �� 1010

is always true during the computation.
() ()()
() ()()

()
1

00
000

1010

=
∨∨¬=

∧¬∧∨∨∧¬∧¬=

¬∧∧¬∧¬∧∨∨∨¬=

B

B

CCCCB

CCCCCCB

p

pp

�

���

��

So B is always true, the production rules producing the
output are non-interfering. This is also true for
acknowledgment MDDs, as the return path of the circuit is
synthesized like the direct path.

5.4 Stability of the production rules
A production rule tG � is stable if and only if G can

change from 1 to 0 only in the states in which ()tR holds.
We have to show that all the production rules are stable. But
the proof depends on the implementation of the 4-phase
protocol that we use. That’s why we introduce �Lemma 1,

which states the part of the proof depending on the protocol
implementation:

Lemma 1 An input A cannot be acknowledged before
the output is produced:
The acknowledgement signal ackA cannot reach the value
1 as long as the output isn’t valid (as long as all the wires

iY of the output have the value 0).
It cannot reach the value 0 as long as the output is valid
(as long as one wire iY of the output has the value 1).
We show for each implementation of the 4-phase protocol

that �Lemma 1 is true:
• Sequential implementation

The production rule that validates ackA is

↑∨∨∨ ackp ACCC ��10 . So
0i

C , one of the iC , must have

the value 1 so that ackA may reach the value 1.
By construction of the acknowledgement MDD of A , we

know that ackY appears in every path, so the production rule

that validates
0i

C is of the form () ↑∧
0iack CY �� . So ackY

must have the value 1 for
0i

C to take the value 1.

The production rule that validates ackY is

↑∨∨∨ ackn YYYY ��10 , so ackA cannot reach the value 1

as long as all the iY have the value 0.

Similarly, the production rule that invalidates ackA

is ↓¬∧∧¬∧¬ ackp ACCC ��10 , so
0i

C , the unique iC

that has the value 1, must reach 0 so that ackA reaches the
value 0.

Like previously, the production rule that invalidates
0i

C is

of the form () ↓∧¬
0iack CY �� , so ackY must have the value

0 for
0i

C to take the value 0. The production rule that

invalidates ackY is ↓¬∧∧¬∧¬ ackn YYYY ��10

So ackA cannot reach 0 as long as there exists a iY that has
the value 1.
• WCHB implementation

The production rule that validates ackA

is ↑∨∨∨ ackp ACCC ��10 . So
0i

C , one of the iC , must

have the value 1 for ackA to take the value 1.
By construction of the acknowledgement MDD of A , we

know that ()YV appears in every path, so the production

rule that validates
0i

C is of the form () () ↑∧
0i

CYV �� . So

Y must be valid for
0i

C to take the value 1. So ackA cannot

reach the value 1 as long as all the iY have the value 0.

Similarly, the production rule that invalidates ackA

is ↓¬∧∧¬∧¬ ackp ACCC ��10 . So
0i

C , the unique iC

that has the value 1, must reach 0 so that ackA reaches 0.

Like previously, the production rule that invalidates
0i

C is

of the form () () ↓∧¬
0i

CYV �� . So Y must be invalid for

0i
C to take the value 0. So ackA cannot reach 0 as long as

there exists a iY that has the value 1.
Let us now prove that the production rules are all stable.

5.4.1 Production rules that validate a path

Let’s consider a path
0i

C . The production rule that

validates
0i

C is ↑∧∧∧
010 i

i

k

ii CSSS i �� .

Consider that we are in the state where the guard is true,
but the transition ↑

0i
C has not happened.

We show that in this state, the guard cannot become false.
Assume that the guard becomes false. It means that A ,

one of the i
jS , reaches the value 0. The production rule that

invalidates A is ↓iack AA � . So it means that ackA has the
value 1.

The set of production rules satisfies �Lemma 1, so this
means that the output Y is valid. The production rule that
validates the output is ↑∨∨∨ fp YCCC ��10 .

Since the paths iC are mutually exclusive, and since the

guard to
0i

C was just valid, the other path cannot reach the

value 1. So
0i

C has reached the value 1, which is impossible

because the transition ↑
0i

C has not happened.

So the guard cannot become false in this state, the
production rule is stable.

5.4.2 Production rules that validate the output

Consider a wire fY of the output. The production rule that

validates fY is ↑∨∨∨ fp YCCC ��10 .

Consider that we are in the state where the guard is true,
but the transition ↑fY has not happened, so all the wires of

Y have the value 0. We show that in this state, the guard
cannot become false.

The paths iC are mutually exclusive, so there is a unique

0i
C that has the value 1. Assume that

0i
C reaches the value

0. The production rule that invalidates
0i

C is

↓¬∧∧¬∧¬
010 i

i

k

ii CSSS i �� .

Let A be one of the i
jS .

0i
C has reached the value 0, so

A must have the value 0. The production rule that
invalidates A is ↓iack AA � . So it means that ackA has the
value 1. The set of production rules satisfies �Lemma 1, so
this means that the output Y is valid, which is impossible
because the transition ↑fY has not happened yet.

So the guard cannot become false in this state, the
production rule is stable.

5.4.3 Production rules that invalidate a path

Let’s consider a path
0i

C . The production rule that

invalidates
0i

C is ↓¬∧∧¬∧¬
010 i

i

k

ii CSSS i �� .

Consider that we are in the state where the guard is true,
but the transition ↓

0i
C has not happened. We show that in

this state, the guard cannot become false. Suppose that the
guard becomes false. It means that A , one of the i

jS ,

reaches the value 0. The production rule that validates A is
↑¬ iack AA � . So it means that ackA has the value 0. The set

of production rules satisfies �Lemma 1, so this means that the
output Y is invalid.

The production rule that invalidates the output is
↓¬∧∧¬∧¬ fp YCCC ��10 , so

0i
C has reached the

value 0, which is impossible because the transition ↓
0i

C

has not happened.
So the guard cannot become false in this state, the

production rule is stable.

5.4.4 Production rules that invalidate the output

Consider a wire fY of the output. The production rule that

invalidates fY is ↓¬∧∧¬∧¬ fp YCCC ��10 .

Consider the state where the guard is true, but the
transition ↓fY has not happened yet, so fY has the value 1.

We show that in this state, the guard cannot become false:
Let

0i
C be one of iC . It has the value 0. Suppose that

0i
C

reaches the value 1. The production rule that validates
0i

C is

↑∧∧∧
010 i

i

k

ii CSSS i ��

Let A be one of the i
jS .

0i
C has reached the value 1, so

A must have the value 1. The production rule that validates
A is ↑¬ iack AA � . So it means that ackA has the value 0.

The set of production rules satisfies �Lemma 1, so this means
that the output Y is invalid, which is impossible because the
transition ↓fY has not happened yet.

So the guard cannot become false in this state, the
production rule is stable.

6 Conclusion
A new approach to model QDI circuits has been

presented. The technique, based on a generalization of the
Binary Decision Diagram called Multi-valued Decision
Diagram, has been demonstrated on an example of circuit.

The model represents both the data path and the return
path of the circuit; QDI circuits have been synthesized from
this model using multi-rail logic, with several
communication protocols. Moreover, the generated circuits
are formally proved to be quasi-delay-insensitive.

Acting on the model modifies the circuit but preserves its
QDI property, thus the model allows QDI optimizations of

the circuit. Further decompositions and optimizations of the
circuits are currently investigated in the group.

References
[1] A.V. Dinh Duc, L. Fesquet, and M. Renaudin.

Synthesis of QDI Asynchronous Circuits from DTL-
style Petri Net. in 11th IEEE/ACM International
Workshop on Logic & Synthesis. 2002. New Orleans,
Louisiana.

[2] A.V. Dinh Duc, J.-B. Rigaud, A. Rezzag, A. Sirinanni,
J. Fragoso, L. Fesquet, and M. Renaudin. TAST CAD
Tools. in ACiD-WG workshop. 2002. Munich,
Germany.

[3] A.J. Martin, The Limitations to Delay-Insensitivity in
Asynchronous Circuits, in Advanced Research in VLSI,
W.J. Dally, Editor. 1990, MIT Press. p. 263--278.

[4] M. Renaudin, Asynchronous circuits and systems: a
promising design alternative. Microelectronic
Engineering, 2000. 54(1-2): p. 133 - 149.

[5] A.M. Lines, Pipelined Asynchronous Circuits, Caltech,
CS-TR-95-21, 1995.

[6] A. Abrial, J. Bouvier, M. Renaudin, P. Senn, and P.
Vivet, A New Contactless Smart Card IC using On-
Chip Antenna ans Asynchronous Microcontroller.
Journal of Solid-State Circuits, 2001. 36: p. 1101-1107.

[7] R. Dreschler and B. Becker, Binary Decision Diagrams,
Theory and Implementation. Kluwer Academic
Publishers ed. 1998: Kluwer Academic Publishers.

[8] T. Kam, T. Villa, R.K. Brayton, and A.L. Sangiovanni-
Vincentelli, Multi-valued decision diagrams: Theory
and applications. International Journal on Multiple-
Valued Logic, 1998. 4(1-2): p. 9-24.

[9] S. Hassoun and T. Sasao, Logic Synthesis and
Verification. Kluwer Academic Publishers ed. 2003:
Kluwer Academic Publishers.

[10] J. Sparso, J. Staunstrup, and M. Dantzer-Sorensen,
Design of delay insensitive circuits using multi-ring
structures, in Proc. European Design Automation
Conference (EURO-DAC). 1992, IEEE Computer
Society Press: Hamburg, Germany. p. 15--20.

[11] R. Manohar and A.J. Martin, Quasi-delay-insensitive
Circuits are Turing Complete, in Proc. International
Symposium on Advanced Research in Asynchronous
Circuits and Systems. 1996, IEEE Computer Society
Press.

