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Abstract 
Quasi-Delay-Insensitive (QDI) circuits behave correctly 

independently of arbitrary delays in gates or wires, which 
gives them many advantages. However, there are a lot of 
restrictions for the design of this type of circuits, making 
them difficult to synthesize automatically. This paper 
presents a new methodology to model and synthesize QDI 
asynchronous circuits. The targeted circuits use the multi-
rail data encoding, and use different handshaking protocols 
for channel-based communications. The proposed synthesis 
algorithms are based on Multi-valued Decision Diagrams. 
This article proves formally that the circuits generated with 
this technique are QDI. An example is given to illustrate the 
circuit modeling and the synthesis. 

1 Introduction 
Asynchronous circuits are circuits that do not have a 

global signal to synchronize them. The synchronisation 
between the blocks is done locally. Those circuits show very 
interesting properties: speed, low power consumption, noise 
emission, security, robustness, reusability, etc. 

Today, the industry needs powerful tools similar to the 
synchronous ones to start with the asynchronous technology. 

This work is part of the TAST [1, 2] (Tima Asynchronous 
Synthesis Tool) project, which aims to develop such tools. 
The synthetized circuits in TAST are quasi-delay 
insensitive, or QDI, which are the most robust asynchronous 
circuits [3]. Today, such circuits use significantly more 
transistors than their synchronous equivalents. Many efforts 
are directed towards the circuit optimisation and transistor 
reduction. The main difficulty is to preserve the property of 
quasi-delay insensivity. 

In this paper, we present a technique to model and 
synthetize a QDI circuit. The model expresses both the 
direct and the return (acknowledgment) path, and supports 
different communication protocols. We prove that the circuit 
generated from this model is QDI. Then, it is possible to 
transform the circuit through its model, and thus optimize it, 
while preserving its QDI property. 

2 Quasi-delay insensitivity 

2.1 Communication protocols 
The behavioral description of each asynchronous block is 

based on the protocol used to communicate with its 
neighbors. To implement a bidirectional indication, two 
kinds of protocols are usually used: the two-phase protocol 
(called « half-handshake ») and the four-phase protocol 
(called « full-handshake ») [4]. In all cases, it is important to 

note that every transaction of the emitter is signaled by a 
request signal and acknowledged by a signal of the receiver. 
In this paper we consider four-phase protocols (see Figure 
1). A request transition is followed by an acknowledgement 
transition, and an acknowledgement transition is followed 
by a request transition.  

Figure 1 shows the following different phases of a four-
phase protocol: 

Phase 1: The receiver receives a request, makes the 
computation and sends the acknowledgement signal. 

Phase 2: The emitter lowers the request signal. 
Phase 3: The receiver lowers the acknowledgment signal. 
Phase 4: The emitter can send a new request if data are 

available. 

Request

Ack.

Phase 1 Phase 2 Phase 3 Phase 4  
Figure 1: The four-phase protocol 

In a computation, the communications are composed of 
several phases. However, the sequential scheduling between 
the input and the output of these phases is not the more 
efficient method. We can schedule them differently, with 
different protocols, to reduce the protocol latency, and 
increase the circuit performances. The generated circuit will 
depend on the protocol. 

The first implemented protocol used to synthesize circuits 
is a four-phase sequential protocol. This protocol is the 
simplest. The second is a four-phase WCHB protocol 
(“Weak Condition Half-Buffer”, [5]). It schedules the 
different phases of the communication and thus increases 
the performances of the circuit. 
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Figure 2: Scheduling of the sequential protocol 

• Sequential protocol: 
This protocol schedules the phases sequentially, as shown 

Figure 2. When the circuit receives a request, it computes 
the output, sends the output request, waits for the output 
acknowledgment, and acknowledges its inupts. 



• WCHB Protocol (Weak Condition Half-Buffer) [5] 
Figure 3 shows the operation performed by the “WCHB 

protocol : 
• When the input raises the request and the circuit is 

ready for a computation, the circuit produces the output 
result. It raises the output request and the input 
acknowledgment. 

• Then the input may then change its value, so the circuit 
has a half buffer to keep the output value while it has 
not been acknowledged. 

• When the input has lowered its request and the output 
has raised its acknowledgment, the circuit lowers the 
output request and the input acknowledgment. 

• When the output has lowered its acknowledgment, the 
circuit can make a new computation. 
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Figure 3: Scheduling of the WCHB protocol 

2.2 Data encoding 
We have seen that the communication protocol uses a 

request-acknowledgment cycle. But if the circuit is delay 
insensitive, we have to guarantee the data correctness on the 
input when the request arrives. One way to do this is to 
encode the request signal with the data, in a delay-
insensitive encoding. 

In this approach we have the following property: the data 
is detected unambiguously, without any temporal 
assumption. It implies robustness, portability and ease of 
use. 

There are several delay-insensitive codes. The 1-of-N 
encoding (also called “multi-rail”), where N is the number 
of values we want to encode, is presented here. In this code, 
a data is invalid if all the wires have the value 0. If rail 
number i  has the value 1, then the data has the value i . 
Codes where more than one wire has the value 1 are 
considered as errors. 

1001

00

Invalid

ValidValid 0 1
 

Figure 4: 1-of-2 code (dual-rail). Having both rails to 1 is 
forbidden. To reach the value 0 (encoded 01) from the 

value 1 (10), the data has to become invalid (00). 

It is the most common DI code. The 1-of-2 code (also 
called “dual-rail”), illustrated Figure 4, is one of the most 
popular, because it is similar to the binary encoding used in 
synchronous circuits. However, some works reported studies 

on the design of 1-of- N  asynchronous circuits, with 2>N  
[6]. 

2.3 Quasi Delay Insensitivity 
A definition of the Quasi-delay insensitive (QDI) circuits 

is given by Alain Martin in [3]: QDI circuits are those 
whose correct operation does not depend on the delays of 
operators or wires, except for certain wires that form 
isochronic forks. 

A fork in a circuit corresponds to a gate output being used 
as the input of more than one gate, as illustrates Figure 5. 
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Figure 5: A fork 

If a fork is isochronic, some transitions on x  do not need 
to be acknowledged by a transition of both y and z  – the 
output of gates 1G  and 2G , respectively. For instance, 
transition ↑x  causes transition ↑1x  and ↑2x . 
Transition ↑1x  causes (and is acknowledged by) 
transition ↑y . But transition ↑2x  does not cause a 

transition on z . Hence, the completion of transition ↑2x  has 
to be justified by timing assumptions. We assume that when 
transition ↑1x  has been acknowledged by transition ↑y , 

transition ↑2x  is also completed. This is the “isochronicity 
assumption” [3]. 

3 Circuit description using MDDs 

3.1 Multi-valued Decision Diagrams 
Multi-valued Decision Diagrams are a generalization of 

BDDs (Binary Decision Diagrams, [7]), presented in [8] : 
Definition 1 (Multi-valued Decision Diagram) : 

A Multi-valued Decision Diagram taking values in Y  is a 
rooted directed acyclic graph: 
Each non-terminal vertex v  is labeled by a multi-valued 
variable ( )vvar , which can take values in the 

range ( )vrange . Vertex v  has arcs directed towards 

( )vrange  children vertices, denoted ( )vchildk  

for ( )vrangek ∈ . 
Each terminal vertex u is labeled by a value 

( ) Yuvalue ∈ . 
We also define a path of a MDD, since this notion will 

play a very important role  
Definition 2 (Path)  : 

Let M  be a MDD. 
Let kvvv ,,, 10 �  be non-terminal vertices of M  and u  a 

terminal vertex of M , let knnn ,,, 10 �  be integers such 



that for all ki ≤≤0 , ( )ii vrangen ∈ . 

( )unvnvnv kk ,:,,:,: 1100 �  is a path of M  if and only if for 

all ki ≤≤0 , ( ) 1+= iin vvchild
i

, and ( ) uvchild knk
= .  

3.2 Semantic of a MDD 
We want to describe the circuit that is to be synthesized 

with a MDD. For this, we need to attach a specific meaning 
to the MDD that is modeling the circuit. Figure 6 illustrates 
an example of MDD, describing a small ALU : the circuit 
described has two dual-rail inputs, A and B, and one 3-rails 
input, I, which selects the operation computed : A and B, A 
or B, or A. 

What makes the decision diagram structure interesting for 
our needs is that it exhibits the mutual exclusivity between 
the values of an input: a given input can only have one value 
during a computation. Each path of the MDD corresponds to 
a possible state of the circuit inputs. At a given instant, only 
one path can describe the values of these inputs. 

We define the notions of active, inactive and transient 
path: 

Let ( )unvnvnvC kk ,:,,:,: 1100 �=  be a path of a given 
MDD.  
Definition 3 (Active path) : 

C  is active if and only if for all ki ≤≤0 , ( )ivvar  is valid 

and has the value in . 

Definition 4 (Inactive path) : 
C  is inactive if and only if for all ki ≤≤0 , ( )ivvar  is 
invalid. 

Definition 5 ( Transient path) : 
C  is transient if and only if for all ki ≤≤0 , if ( )ivvar  is 

valid, then its value is in . 
The output of the circuit implements the 4-phase protocol. 

The circuit has two computing phases: up-going phase and 
down-going phase.  
• Up-going phase: The output of the circuit stays invalid as 
long as no path of the MDD is active. It can only become 
valid if a path is active. When the output becomes valid, the 
circuit gets in the down going phase. 
• Down-going phase: Let C be the active path at the 
beginning of the down-going phase. The output of the 
circuit stays valid as long as C is transient. It can only 
become invalid if C becomes invalid. When the output 
becomes invalid, the circuit gets in the up-going phase. 

Note that the different path of a MDD are mutually 
exclusive: during a computation, two distinct path cannot 
both be active. 

3.3 Acknowledgment 
The circuits which we want to generate must implement 

the 4-phase protocol. So we have to produce the output, but 
also the signals that acknowledge the inputs. To produce 
such signals, we extract from a MDD the needed 

information to acknowledge each input, in the form of 
secondary MDDs, or acknowledgement MDDs. 

An acknowledgement MDD specifies a signal. We 
consider a signal as a particular case of multi-rail, which is 
valid when the signal is 1 and invalid when the signal is 0. It 
has only one possible valid value, which implies only one 
terminal vertex in the MDD. 
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Figure 6: An example of 
MDD, describing a small 
ALU. The circuit has 3 

inputs, A, B and I. 
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Figure 7: An example of 

acknowledgement MDDs. 
+ denotes the (unique) 
valid value, and Ø the 

invalid value. 

As shows Figure 7, in some cases an input of the circuit 
must not be read to produce the output. Then, it must not be 
acknowledged: its acknowledgement signal has to stay 
invalid. Therefore, we add a special terminal vertex, noted 
Ø, which allows some path to maintain the signal invalid. 

To generate the acknowledgement MDD of an input 
variable, we have to isolate the reading information of this 
variable, as shows the algorithm Figure 8. 

exract(mdd, variable)= 
 reurn copy_until(root(mdd), variable); 

copy_until(vertex, variable) = 
 if is_terminal(vertex) then 
  return build_terminal(Invalid); 
 else if var(vertex) == variable then 
  return build_terminal(Valid); 
 else 
  for i in range(vertex) do 
   c = child(i, node); 
   childs[i] = copy_until(c, variable); 
  v = var(vertex); 
  r = ramge(vertex); 
  return build_vertex(v, r, childs); 

 
Figure 8: Algorithm of extraction of the 

acknowledgement MDD of an input variable from a 
MDD 

The inputs must not be acknowledged before the output is 
produced; otherwise the inputs might be invalidated by the 
environment before the circuit produces the output. In fact, 
we must be able to encode the different implementations of 
the 4-phase protocol (sequential, WCHB, etc.) in the MDD 
and the acknowledgement MDDs. To do this, we modify 
them, to encode the protocol information 



• Sequential implementation 
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Figure 9: An example of MDD and acknowledgement 

MDD using sequential protocol 

The four phases of the protocol are sequential: we have to 
wait for the acknowledgement of the output to acknowledge 
the inputs. It is sufficient to add a ackS  vertex at the root of 
each acknowledgement MDD, as shown Figure 9. Then, 
each input will only be acknowledged when the 
acknowledgement signal of the output has been received. 
• WCHB implementation 
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Figure 10: An example of MDD and acknowledgement 
MDD using WCHB protocol V(S) is an input signal of 
the circuit, computing the validity of the output data. 

Here, the protocol synchronizes the up-going and down-
going phases of the input and output channels, as explained 
in section �2.1.To encode this, we insert a ( )SV  vertex 
(corresponding to the validity of the output)1 at the root of 
each acknowledgement MDD, and a ackS vertex at the root 
of the MDD. 

The ackS  vertex on the MDD will make the circuit 
produce the output only when the acknowledgment signal of 
the output is low, and keep the output active until it has been 
acknowledged by the output, and thus represents the half-

                                                           
1We consider that the validity of the output is calculated 

by the environment, therefore it is an input of the circuit.  

buffer needed. The ( )SV  on the acknowledgment MDDs 
makes the circuit acknowledge its inputs as soon as the 
output is produced. Figure 10 illustrates how the WCHB 
protocol is modeled in the representation. 

4 Synthesis 

4.1 Generation of the MDD 
We show here how to generate a MDD from a boolean 

expression. The boolean expression has to express several 
things: 
• the information that an input must be read or not, 
• the value that the output must take, depending on the 

inputs read, 
• all this, keeping in mind that the inputs can take more 

than two values (multi-rail). 
For the first statement, we decide that an input that does 

not appear in a branch of the expression will not be read in 
that branch. This means that for a dual rail input b , we will 

not be allowed to simplify bb ∨ , since this would mean not 
reading b anymore. 

The expressions are constructed with a generalization of 
the boolean operations, as presented in [9]: 
• A product-type operation, ∧ , that generalizes the 

boolean and 
• A sum-type operation, ∨ , that generalizes the boolean 

or 
• Literal unary operations that generalize the boolean 

not, defined by 
�
�
� ∈−

=
otherwise

Sxifm
x S

0
1

, where m m 

is the number of rails of x  and S  is a subset of the 
values that x  can take: [ ]1,0 −⊂ mS . 

Theorem 1  
Every multiple-valued function can be decomposed with 
respect to a variable ix , as 

( ) �
−

=
=∧=

1

0
1 ,

m

j
jx

j

in
i

fxxxf �  

where ( )niijx
xxjxxff

i
�� ,,,, 111 +−= =  are co-factors of 

f with respect to ix . 
We use �Theorem 1 to build the MDD, as shows Figure 11. 
As an example, we take the following expression, where 

i  is a 1-of-3 input, a  and b  are 1-of-2 inputs: 
( )( ) ( )( ) ( )aibaibai ∧∨∨∧∨∧∧ 210  

This expression represents a multiplexer. 
For this expression, if we want to implement a sequential 

communication protocol, we obtain the MDDs of Figure 9. 
If we want to implement a WCHB communication 

protocol, we obtain the MDDs of Figure 10. 



build_mdd(expr) = 
 if is_constant(expr) then 
  return build_terminal(expr); 
 else 
  a = get_some_variable(expr); 
  for i in range(a) do 
   cofact = cofactor(expr, a, i); 
   c[i] = build_mdd(cofact); 
  return build_vertex(a, range(a), c); 

 
Figure 11: Algorithm of construction of a MDD from an 

expression 

4.2 Circuit Synthesis 
We present here an algorithm to synthesize a circuit 

modeled by a MDD. This algorithm synthesizes circuits 
similar to DIMS [10], but with multi-rail inputs and outputs, 
and with a protocol. We use the same algorithm to 
synthesize the direct path of the circuit (to generate the 
output), and the return path (to generate the 
acknowledgement of the inputs).  

As shown Figure 12, for each path of the MDD, we 
generate a Muller C-element, with each vertex of the path as 
inputs. Then, we regroup all paths that produce the same 
value of the output with an “Or” gate. The output of this 
gate is a wire of the output of the circuit. Thus, the circuits 
obtained are two level logic circuits. The first level is 
composed of Muller gates, the second level of OR gates. 

array_of_lists tmp; 

synthesize(mdd m) = 
 iter_path(root(m), empty_list()); 
 for i in range(m) 
  out[i] = create_or(tmp[i]); 

iter_path(vertex v, wires_list w) = 
 if is_teminal(v) then 
  m = create_muller(w); 
  add_to_list(m, tmp[value(v)]); 
 else 
  for i in range(v) do 
   curr_w = get_wire(var(v), i); 
   new_w = add_to_list(curr_w, w); 
   iter_path(child(i, v), new_w); 

 
Figure 12: Algorithm of synthesis of the circuit described 

by a MDD. 

Further decomposition and optimization of the two-level 
circuits is beyond the scope of this paper. It is currently 
investigated in the group. 

Figure 13 shows the circuit synthesized using the MDDs 
of Figure 9, which implements a sequential protocol; Figure 
14 shows the circuit synthesized using the MDDs of Figure 
10, which implements a WCHB protocol. The WCHB 
protocol requires a little extra logic, but the circuit will run 
faster. 
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Figure 13: QDI Circuit 

using sequential protocol 
Figure 14: QDI Circuit 
using WCHB protocol 

5 Demonstration 
In the previous parts, we have shown a method to 

synthesize circuits from a MDD representation. We claimed 
that the circuits synthesized are QDI, but it is not obvious. 
In this part, we prove formally that the circuit generated 
from a MDD is really QDI. 

5.1 Quasi-delay insensibility 
[11] shows a necessary and sufficient condition for a set 

of production rules to be quasi-delay insensitive. We quote a 
few definitions for this theorem: 
Definition 6 (Production rule) :  

A production rule is a construct of the form tG � , where 
t  is a transition and G  is a boolean expression known as 
the guard of the production rule. 
A gate with output x , pull-up network +B  and pull-down 

network −B , corresponds to the two following production 
rules: ↓↑ −+ xBxB ��  

Definition 7 (Result) : 
We define the predicate R, the result of a transition: 

( ) xxR =↑  and ( ) xxR ¬=↓ .  

Definition 8 (Non-interference) : 
The production rules ↑+ xB �  and ↓− xB �  are said 
to be non-interfering in a computation if and only if 

−+ ¬∨¬ BB  is always true in the computation. 
A set of production rules is non-interfering if and only if 
every production rule in the set is non-interfering. 

Definition 9  (Stability) : 
A production rule tG �  is said to be stable in a 
computation if and only if G  can change from true to 
false only in those states of the computation in which ( )tR  



holds. A production rule set is said to be stable if and only 
if every production rule in the set is stable. 

Theorem 2  (Quasi-delay insensitivity) : 
A circuit is quasi-delay insensitive if and only if the 
production rule set describing it is stable and non-
interfering. 
�Theorem 2 is based on the notion of production rules. 

Therefore, we have to generate a set of production rules 
describing the circuit to apply this theorem, and prove that 
the circuit is QDI. 

5.2 Generation of production rules 
We need to generate the production rules describing the 

circuit that we want to synthesize from a given MDD. We 
generate production rules from the MDD specifying the 
outputs and the acknowledgement. 

Moreover, the circuit model used in [11] is closed (each 
gate output is the input of another gate), so we also have to 
define the production rules of the environment of the circuit. 
We know that the environment implements the four-phase 
protocol; it is then easy to generate those production rules. 

5.2.1 Production rules for the MDD 
In this part, the production rules corresponding to the 

synthesized circuit are generated. Let’s consider, for each 
terminal vertex, all paths that lead to it: 

Let f  be a terminal vertex of the MDD, 

let ( )fsnsnsnC i

k

i

k

iiii
i ii ,:,,:,: 1100 �=  be all the paths of the 

MDD leading to f . 

Let i
jS  be the i

js th child of input ( )i
jnvar . Let fY  be the 

f th child of the output digit. 
We generate several production rules for vertex f  :   
• Some production rules specify the up going phase: 
The wire corresponding to f  must go to 1 if iC , one of 

the paths, becomes active:  
↑∨∨∨ fp YCCC ��10  

↑∧∧∧ i
i

k

ii CSSS i ��10 , for pi ≤≤0  

• Some production rules specify the down going 
phase: 

The wire corresponding to f  must go to 0 if all the paths, 
are inactive:  

↓¬∧∧¬∧¬ fp YCCC ��00  

↓¬∧∧¬∧¬ i
i

k

ii CSSS i ��10 , for pi ≤≤0  

5.2.2 Production rules for the environment 
To use the theorem, the circuit needs to be closed. This is 

obtained by closing the circuit with an environment which 
must be modeled too. We know that the environment 
follows the four-phase protocol. 

For each input A , we have to generate two production 
rules: ↑¬ iack AA �  and ↓iack AA � , where ackA  is the 
acknowledgement signal of A , and i  the value read on A  
during the computation. 

Similarly, for the digit Y , we define two production rules: 
• ↑∨∨∨ ackn YYYY ��10   

• ↓¬∧∧¬∧¬ ackn YYYY ��10   

where ackY  is the acknowledgement signal of Y , and n  its 
number of wires. 

5.3 Non-Interference of the production rules 

Let’s consider two production rules, ↑+ xB �  and 
↓− xB � . They are non-interfering in a computation if and 

only if −+ ¬∨¬ BB  is always true during the computation. 
First, we show that the production rules for a path iC  of 

the MDD are non-interfering:  
↑∧∧∧ i

i

k

ii CSSS i ��10 , ↓¬∧∧¬∧¬ i
i

k

ii CSSS i ��10  

We have to show that 
( ) ( )i

k

iii

k

ii
ii SSSSSSA ¬∧∧¬∧¬¬∨∧∧∧¬= �� 1010  

is always true during the computation. 
( ) ( )( )

( )
( )

1
000

1100

1010

=
∧∧∧¬=

¬∧∧∧¬∧∧¬∧¬=

¬∧∧¬∧¬∧∧∧∧¬=

A

A

SSSSSSA

SSSSSSA
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k
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k
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k

iii

k

ii

ii

ii

�
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So A  is always true, the production rules for the paths 
are non-interfering. 

Let f  be a terminal vertex of the MDD, corresponding to 

the output wire fY . The production rules acting on fY  are:  

↑∨∨ fp YCCC ��10 , ↓¬∧¬∧¬ fp YCCC ��10  

We have to show that 
( ) ( )pp CCCCCCB ¬∧∧¬∧¬¬∨∨∨∨¬= �� 1010  

is always true during the computation. 
( ) ( )( )
( ) ( )( )

( )
1

00
000

1010

=
∨∨¬=

∧¬∧∨∨∧¬∧¬=

¬∧∧¬∧¬∧∨∨∨¬=

B

B
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CCCCCCB

p

pp

�

���

��

 

So B is always true, the production rules producing the 
output are non-interfering. This is also true for 
acknowledgment MDDs, as the return path of the circuit is 
synthesized like the direct path. 

5.4 Stability of the production rules 
A production rule tG �  is stable if and only if G  can 

change from 1 to 0 only in the states in which ( )tR  holds. 
We have to show that all the production rules are stable. But 
the proof depends on the implementation of the 4-phase 
protocol that we use. That’s why we introduce �Lemma 1, 



which states the part of the proof depending on the protocol 
implementation: 

Lemma 1 An input A  cannot be acknowledged before 
the output is produced: 
The acknowledgement signal  ackA  cannot reach the value 
1 as long as the output isn’t valid (as long as all the wires 

iY  of the output have the value 0). 
It cannot reach the value 0 as long as the output is valid 
(as long as one wire iY  of the output has the value 1).  
We show for each implementation of the 4-phase protocol 

that �Lemma 1 is true: 
• Sequential implementation 

The production rule that validates ackA  is 

↑∨∨∨ ackp ACCC ��10 . So
0i

C , one of the iC , must have 

the value 1 so that ackA  may reach the value 1. 
By construction of the acknowledgement MDD of A , we 

know that ackY  appears in every path, so the production rule 

that validates 
0i

C  is of the form ( ) ↑∧
0iack CY �� . So ackY  

must have the value 1 for 
0i

C  to take the value 1. 

The production rule that validates ackY  is 

↑∨∨∨ ackn YYYY ��10 , so ackA  cannot reach the value 1 

as long as all the iY  have the value 0. 

Similarly, the production rule that invalidates ackA  

is ↓¬∧∧¬∧¬ ackp ACCC ��10 , so
0i

C , the unique iC  

that has the value 1, must reach 0 so that  ackA  reaches the 
value 0. 

Like previously, the production rule that invalidates 
0i

C  is 

of the form ( ) ↓∧¬
0iack CY �� , so ackY  must have the value 

0 for 
0i

C  to take the value 0. The production rule that 

invalidates ackY  is ↓¬∧∧¬∧¬ ackn YYYY ��10  

So ackA  cannot reach 0 as long as there exists a iY  that has 
the value 1. 
• WCHB implementation 

The production rule that validates ackA  

is ↑∨∨∨ ackp ACCC ��10 . So
0i

C , one of the iC , must 

have the value 1 for ackA  to take the value 1. 
By construction of the acknowledgement MDD of A , we 

know that ( )YV  appears in every path, so the production 

rule that validates 
0i

C  is of the form ( ) ( ) ↑∧
0i

CYV �� . So 

Y  must be valid for 
0i

C  to take the value 1. So ackA  cannot 

reach the value 1 as long as all the iY  have the value 0. 

Similarly, the production rule that invalidates ackA  

is ↓¬∧∧¬∧¬ ackp ACCC ��10 . So
0i

C , the unique iC  

that has the value 1, must reach 0 so that  ackA  reaches 0. 

Like previously, the production rule that invalidates 
0i

C  is 

of the form ( ) ( ) ↓∧¬
0i

CYV �� . So Y  must be invalid for 

0i
C  to take the value 0. So ackA  cannot reach 0 as long as 

there exists a iY  that has the value 1. 
Let us now prove that the production rules are all stable. 

5.4.1 Production rules that validate a path 

Let’s consider a path
0i

C . The production rule that 

validates 
0i

C  is ↑∧∧∧
010 i

i

k

ii CSSS i �� . 

Consider that we are in the state where the guard is true, 
but the transition ↑

0i
C  has not happened. 

We show that in this state, the guard cannot become false. 
Assume that the guard becomes false. It means that A , 

one of the i
jS , reaches the value 0. The production rule that 

invalidates A  is ↓iack AA � . So it means that ackA  has the 
value 1. 

The set of production rules satisfies �Lemma 1, so this 
means that the output Y  is valid. The production rule that 
validates the output is ↑∨∨∨ fp YCCC ��10 . 

Since the paths iC  are mutually exclusive, and since the 

guard to 
0i

C  was just valid, the other path cannot reach the 

value 1. So 
0i

C  has reached the value 1, which is impossible 

because the transition ↑
0i

C  has not happened. 

So the guard cannot become false in this state, the 
production rule is stable. 

5.4.2 Production rules that validate the output 

Consider a wire fY  of the output. The production rule that 

validates fY  is ↑∨∨∨ fp YCCC ��10 . 

Consider that we are in the state where the guard is true, 
but the transition ↑fY  has not happened, so all the wires of 

Y  have the value 0. We show that in this state, the guard 
cannot become false. 

The paths iC  are mutually exclusive, so there is a unique 

0i
C  that has the value 1. Assume that 

0i
C  reaches the value 

0. The production rule that invalidates 
0i

C  is 

↓¬∧∧¬∧¬
010 i

i

k

ii CSSS i �� . 

Let A  be one of the i
jS . 

0i
C  has reached the value 0, so 

A  must have the value 0. The production rule that 
invalidates A  is ↓iack AA � . So it means that ackA  has the 
value 1. The set of production rules satisfies �Lemma 1, so 
this means that the output Y  is valid, which is impossible 
because the transition ↑fY  has not happened yet. 

So the guard cannot become false in this state, the 
production rule is stable. 



5.4.3 Production rules that invalidate a path 

Let’s consider a path
0i

C . The production rule that 

invalidates 
0i

C  is ↓¬∧∧¬∧¬
010 i

i

k

ii CSSS i �� . 

Consider that we are in the state where the guard is true, 
but the transition ↓

0i
C  has not happened. We show that in 

this state, the guard cannot become false. Suppose that the 
guard becomes false. It means that A , one of the i

jS , 

reaches the value 0. The production rule that validates A  is 
↑¬ iack AA � . So it means that ackA  has the value 0. The set 

of production rules satisfies �Lemma 1, so this means that the 
output Y  is invalid. 

The production rule that invalidates the output is 
↓¬∧∧¬∧¬ fp YCCC ��10 , so 

0i
C  has reached the 

value 0, which is impossible because the transition ↓
0i

C  

has not happened. 
So the guard cannot become false in this state, the 

production rule is stable. 

5.4.4 Production rules that invalidate the output 

Consider a wire fY  of the output. The production rule that 

invalidates fY  is ↓¬∧∧¬∧¬ fp YCCC ��10 . 

Consider the state where the guard is true, but the 
transition ↓fY  has not happened yet, so fY  has the value 1. 

We show that in this state, the guard cannot become false: 
Let 

0i
C  be one of iC . It has the value 0. Suppose that 

0i
C  

reaches the value 1. The production rule that validates 
0i

C  is 

↑∧∧∧
010 i

i

k

ii CSSS i ��  

Let A  be one of the i
jS . 

0i
C  has reached the value 1, so 

A  must have the value 1. The production rule that validates 
A  is ↑¬ iack AA � . So it means that ackA  has the value 0. 

The set of production rules satisfies �Lemma 1, so this means 
that the output Y  is invalid, which is impossible because the 
transition ↓fY  has not happened yet. 

So the guard cannot become false in this state, the 
production rule is stable. 

6 Conclusion 
A new approach to model QDI circuits has been 

presented. The technique, based on a generalization of the 
Binary Decision Diagram called Multi-valued Decision 
Diagram, has been demonstrated on an example of circuit. 

The model represents both the data path and the return 
path of the circuit; QDI circuits have been synthesized from 
this model using multi-rail logic, with several 
communication protocols. Moreover, the generated circuits 
are formally proved to be quasi-delay-insensitive. 

Acting on the model modifies the circuit but preserves its 
QDI property, thus the model allows QDI optimizations of 

the circuit. Further decompositions and optimizations of the 
circuits are currently investigated in the group. 
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